18th CIMT Annual Meeting

Topic:
Туре:
Abstract no.:
Status:
Supported by:

Therapeutic Vaccination eTalk A-162 submitted

The retroviral engineering of a human plasmacytoid dendritic cell-based vaccine allowed the priming and expansion of multispecific viral and tumor antigen-specific T-cells in multiple HLA contexts.

K. Lenogue¹, A. Walencik², K. Laulagnier¹, J.-P. Molens², H. Benlalam³, B. Dreno⁴, P. Coulie⁵, M. Pule⁶, L. Chaperot², **J. Plumas**¹

¹PDC*line Pharma, La Tronche, France, ²Etablissement Français du Sang Auvergne Rhône-Alpes, Research and development laboratory, La Tronche, France, ³CRCINA, INSERM, Université de Nantes, Nantes, France, ⁴CHU Nantes, Onco-dermatology department, Nantes, France, ⁵De Duve Institute, Université Catholique de Louvain, Brussels, Belgium, ⁶Cancer Institute, University College London, London, United Kingdom

Text

Because dendritic cells are crucial to prime and expand antigen-specific CD8⁺ T-cells, several strategies are designed to use them in therapeutic vaccines against infectious diseases or cancer. In this context, off-theshelf allogeneic dendritic cell-based platforms are more attractive than individualized autologous vaccines tailored to each patient. We have previously shown that a unique dendritic cell line (PDC*line) platform of plasmacytoid origin, was able to prime and expand tumor-specific CD8⁺ T cells in vitro and in vivo in a firstin-human clinical trial with melanoma patients. The aim of the present study was to improve the PDC*line platform using retroviral engineering. The transduced PDC*line cells were cocultured with either Peripheral blood mononuclear cells (PBMCs) or antigen-specific T-cell clones. The antigen presentation efficiency was displayed by the expansion of antigen-specific CD8⁺ T cells present in PBMCs or the secretion of cytokines by T-cell clones measured using flow cytometry. We demonstrated that the clinical-grade PDC*line transduced with genes encoding whole viral or tumoral proteins efficiently processed the transduced antigens and stably presented the derived peptides to specific CD8⁺ T cells both in HLA-A*02:01 and HLA-B*07:02 molecules expressed by PDC*line. When PDC*line cells were transduced with retroviral constructs encoding a polyepitope composed of four HLA-A*02:01-restricted peptides from the tumoral or viral antigens, the cells were able to mount a multispecific CD8⁺ T-cell response against peptides of the polyepitope. We also demonstrated that the addition of a part of the sequence of the Lysosome-associated membrane protein-1 (LAMP-1) to the whole protein or to the polyepitope greatly improved the presentation of some peptides. Lastly, we used retroviral transduction to express a new HLA class I molecule, HLA-B*35:02, in PDC*line. After loading with HLA-matched peptides, this new PDC*line successfully presented the peptides in the endogenous HLA-A*02:01 or in the new HLA-B*35:02 molecules. The HLA-A*24:02 allele was also of interest as the Asian population expresses it more than the Caucasian population. The PDC*line transduced with HLA-A*24:02 and loaded with the HLA-matched peptide from the HIV protein Nef was able to prime and expand specific CD8⁺ T-cells (unpublished results). The retroviral engineering can thus benefit a broadened population of patients through the easy addition of new HLA class I molecules. The demonstration of the effective retroviral transduction of PDC*line cells strengthens and broadens the scope of the PDC*line antigen presentation platform, which can be used in adoptive or active immunotherapy.

Authors

First author: Presented by: Submitted by: Kevin Lenogue Joël Plumas Karine Laulagnier