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ABSTRACT
In recent years, immunotherapy has finally found its place in the anti-cancer 

therapeutic arsenal, even becoming standard of care as first line treatment for 
metastatic forms. The clinical benefit provided by checkpoint blockers such as anti-
PD-1/PD-L1 in many cancers revolutionized the field. However, too many patients 
remain refractory to these treatments due to weak baseline anti-cancer immunity. 
There is therefore a need to boost the frequency and function of patients’ cytotoxic 
CD8+ cellular effectors by targeting immunogenic and tumor-restricted antigens, 
such as neoantigens using an efficient vaccination platform. Dendritic cells (DC) 
are the most powerful immune cell subset for triggering cellular immune response. 
However, autologous DC-based vaccines display several limitations, such as the lack 
of reproducibility and the limited number of cells that can be manufactured. Here 
we discuss the advantages of a new therapeutic vaccine based on an allogeneic 
Plasmacytoid DC cell line, which is easy to produce and represents a powerful platform 
for priming and expanding anti-neoantigen cytotoxic CD8+ T-cells.

INTRODUCTION

Due to the limited clinical benefit of anti-PD-1/
PD-L1 therapy in many cancer indications, there is a 
renewed interest in therapeutic cancer vaccines to improve 
clinical responses. Indeed, one of the main explanations 
for resistance to these immune checkpoint inhibitors 
(ICI) is the absence of pre-existing anti-tumor immunity 
or the inadequacy of this immune response [1]. These 
therapeutic antibodies block the interaction between the 
inhibitory molecule PD-1 expressed on anti-tumor CD8+ 
T-cells and its ligand PD-L1, expressed by tumor cells.
Their expected in vivo mechanism of action is thus to
unleash the cytotoxic activity of anti-tumor effectors [2].
In addition, different reports describing the effect of the
treatment of patients with ICIs in a neo-adjuvant setting
strongly suggested that reinforcing the patient’s own
immune system led to the eradication of tumor cells, as
evidenced by major or complete pathological responses
[3–9]. Therefore, it is becoming increasingly clear that the

combination of ICIs with therapeutic cancer vaccines that 
aimed at priming or enhancing anti-tumor CD8+ T-cell 
effectors could increase the efficacy of each treatment 
used separately [10–12].

Neoantigens as a source of tumor antigens for 
cancer immunotherapies

Among several potential tumor antigens that can be 
targeted by the immune system, neoantigens (NeoAgs) 
appear very attractive because they are tumor cell-specific 
proteins and unknown to the immune system (i.e., there is 
no pre-existing central immune tolerance) [13, 14]. NeoAgs 
were initially described as the result of non-synonymous 
somatic mutations [14], but they can also be derived from 
many other genomic abnormalities in the transcriptional 
and translational process leading to the synthesis of 
abnormal proteins [15–23]. Interestingly, the frequency of 
tumor somatic mutations correlates with objective response 
rates to ICIs in many cancers [24, 25]. Thus, these single 
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nucleotide variants may serve as neoantigens recognized 
by the immune system, leading to tumor cell death 
mediated by NeoAg-specific CD8+ T-cells. Very recently, 
the number and frequency of NeoAg-specific CD8+ 
T-cells were confirmed to be associated with the clinical 
outcome of adoptive cell therapy with tumor-infiltrating 
lymphocytes (TIL) by using an elegant approach [26]. 
Interestingly, it was also suggested recently that the 
expansion and activation of NeoAg-specific CD8+ T-cells 
are associated with the response to ICIs in patients with 
metastatic urothelial carcinoma [27]. However, despite the 
considerable number of diverse genomic abnormalities, 
very few candidates are considered as “good” NeoAgs. 
This is due to the highly selective molecular machinery 
allowing the presentation of an immunogenic peptide 
derived from NeoAgs to the immune system through 
HLA class I molecules expressed by tumor cells [15, 23]. 
Recent significant developments in algorithms and deep 
machine learning have provided opportunities to identify 
few NeoAgs in the majority of patients, especially in 
cancers induced by mutagens or DNA mismatch repair 
[16, 17]. This is probably why therapeutic NeoAg-based 
cancer vaccines were first developed in melanoma [28–
30]. The availability of resected tumors has led to develop 
vaccines also in glioblastoma, non-small-cell lung cancer 
(NSCLC), bladder, gastrointestinal, colorectal, urothelial, 
and pancreatic cancers [31–41]. All studies, except two 
[36, 37], have so far used private NeoAgs, i.e., identified 
in a single patient. Most of the clinical studies published 
are still in phase I or Phase I/II and despite the combination 
with ICIs, these vaccine approaches are not yet validated 
clinically.

From an immunological point of view, it is quite 
surprising that many studies used a vaccine regimen 
based on local injections of long peptides combined 
with adjuvants [29, 31–33, 36, 37, 41]. Indeed, these 
approaches were known to be rather suboptimal to prime 
and stimulate anti-tumor CD8+ T-cells, and may even 
generate tolerogenic responses [42–46]. As a result, very 
weak NeoAg-specific CD8+ T-cell responses have been 
obtained from patients, in contrast to NeoAg-specific 
CD4+ T-cells which are not the main effectors of anti-
tumor immune response. Indeed, except in rare cases, 
CD4+ T-cells are not cytotoxic and cannot kill tumor cells 
due to the lack of expression of HLA class II molecules 
by tumor cells. RNA-based approaches have also been 
tested with no significant change in the nature and the 
amplitude of the anti-tumor response [30, 34]. However, 
Moderna and Merck have recently reported results on 
melanoma that will deserve attention when published. 
The use of adenoviral-based platform has been recently 
described with some interesting results in few patients 
[39, 40]. By contrast, the use of mature dendritic cells 
(DC) loaded with short peptides derived from NeoAgs has 
demonstrated strong expansions of cytotoxic CD8+ T-cells 
for many NeoAgs in all melanoma patients tested [28].

Dendritic cells are essential for the induction of 
anti-tumor response

Dendritic cells are perfectly equipped to process 
and present tumor antigen-derived peptides to naive 
CD8+ T-cells in lymphoid organs, transforming them into 
effector memory cells capable of reaching to the tumor 
site and killing tumor cells [47, 48]. They are also very 
effective in reactivating circulating and tissue-resident 
anti-tumor memory T-cells [47]. Dendritic cells therefore 
appear to be of great interest for the development of a 
cancer vaccine based on NeoAgs, as they directly and 
efficiently stimulate the appropriate anti-tumor effector 
cells after injection, avoiding any induction of tolerance 
[49, 50]. However, to date, given that the main antigen-
presenting platforms have used autologous DCs, they 
have faced major challenges: the cost of manufacturing, 
reproducibility, feasibility, the availability of sufficient 
drug product, the suboptimal efficacy of the product, 
the difficulty of establishing quality control of immune 
activity, and the heterogeneity of clinical trials since 
all patients were treated with a different drug product 
[51]. Except in prostate cancer [52] and very recently in 
glioblastoma [53], autologous DC-based vaccines have not 
yet proven their efficiency [54]. Interestingly, numerous 
issues can be solved using allogeneic dendritic cells [55]. 
Indeed, allogeneic DCs can be easily manufactured, as the 
cell source is independent of patients. In addition, the cell 
drug product is shortly available for the patients when they 
are enrolled and its potency to stimulate anti-tumor CD8+ 
T-cells can be checked before infusion.

Allogeneic plasmacytoid dendritic cells represent 
an efficient vaccination platform

We have developed a novel approach using an 
allogeneic plasmacytoid dendritic cell (PDC) line as an 
antigen-presentation platform showing great potency 
to prime and expand viral or tumor-specific CD8+ T 
cells in vitro and in vivo in a humanized mouse model  
[55–65]. This off-the-shelf product is scalable, versatile, 
cost-effective, and guarantees the homogeneity of 
treatment and clinical results as the same product is used 
for all patients. This PDC platform, named PDC*vac, was 
first evaluated with shared tumor-associated antigens in 
the treatment of melanoma with encouraging results [66]. 
This first-in-human phase I clinical trial demonstrated 
PDC*vac safety and biological activity since it primed and 
expanded anti-tumor CD8+ T-cells in patients. Moreover, 
we have shown the in vitro synergy of PDC*vac with anti-
PD-1 drug product leading to the improved expansion 
of anti-tumor CD8+ T-cells from metastatic melanoma 
patients. The PDC*vac platform adapted to lung cancer 
patients (PDC*lung01 product) is currently being 
evaluated in the treatment of metastatic squamous and 
non-squamous lung cancer patients in combination with 
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anti-PD-1 antibody (NCT03970746). The preliminary 
results of this phase I/II are very encouraging in terms of 
safety, biological, and clinical activities [67].

Given the afore-mentioned advantages of NeoAgs 
in vaccine approaches, we have exploited the PDC*vac 
platform in order to activate NeoAg-specific immune 
response using the same methodology as previously 
described [58, 66].

We have performed in vitro experiments showing 
that this new product named PDC*neo can effectively 
prime and expand NeoAg-specific CD8+ T-cells. As a 
proof of concept, PDC*line cells were loaded with two 
NeoAgs (ME-1 and AKAP13, Table 1) already described 
in melanoma and lung cancer patients [28, 68] and two 
commonly shared tumor-associated antigens as positive 
controls (gp100, CAMEL). Loaded PDC*line was then 
cultured with purified healthy donors’ CD8+ T-cells for 3 
weeks before detecting specific T-cells with multimer tools 
(Figure 1). In such experiments, we used CD8+ T-cells 
purified from healthy donors because they were naive, 

and thus never encountered NeoAgs. As a consequence, 
the basal circulating precursor frequencies were expected 
extremely low (less or equal to 1/1,000,000 in total 
CD8+ population). However, after weekly stimulations 
of these rare naive cells with PDC*neo product, a 
sizeable expansion of antigen-specific CD8+ T-cells 
was observed as soon as 7 days of co-culture, followed 
by a powerful expansion at day 21 (Figure 1A and 1B). 
Indeed, the absolute number of antigen-specific T-cells 
highly increases from D7 to D21 for both ME-1 and 
AKAP13. (Figure 1C). As expected, CAMEL- and gp100-
specific T-cells were also massively primed and expanded 
confirming the potency of PDC*line cells (Figure 1C).

Interestingly, after 21 days of culture with PDC*vac, 
all antigen-specific T-cells displayed an effector/memory 
phenotype (CCR7neg and CD45RAneg; Figure 2A). 
Moreover, the NeoAg-specific CD8+ T-cells induced 
by PDC*vac presented functional activity as shown by 
the expression of CD107 and IFNγ upon stimulation 
(Figure 2B). Noteworthy, these cells were specific to 

Table 1: Features of neoantigens
Name Mutated peptide Parental Peptide Reference
ME-1 FLDEFMEGV FLDEFMEAV [68]
AKAP13 Q285K KLMNIQQKL KLMNIQQQL [28]

Figure 1: Priming and expansion of NeoAg-specific T-cells by PDC*vac. CD8+ T-cells were purified from the blood of 3 
healthy donors (HD#01, HD#02, HD#03) and cocultured with peptide-loaded PDC*line cells during 3 weeks with weekly restimulation 
at D7 and D14, as detailed in Lenogue et al. [58]. Antigen-specific CD8+ T-cells (ASTC) were measured before (D0) and at different time 
points during coculture using multimer labeling. The dot plots show the proportion of CD8+ T-cells specific to NeoAg (A) and to tumor-
associated antigens (B) at each time point. At D0, no specific T-cells were detectable above the limit of detection of 0.005%. From D7 
to D21, a continuous increase is visible for all antigens. (C) The cumulative absolute number of ASTCs is plotted at each time point, for 
each antigen, and for each of the 3 donors. Each symbol represents a donor: HD#01 is a filled circle, HD#02 a triangle, and HD#03 a filled 
square. The means of the 3 values +/− SD are shown. One-way Anova statistical analysis was performed. *p < 0.05; **p < 0.01.
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Figure 3: The use of PDC*vac platform to develop NeoAg-based cancer vaccines. Peptides derived from shared or private 
neoantigens will be loaded on PDC*line cells before their irradiation, packaging, and freezing. The resulting drug product will be thawed 
on demand and injected into patients to prime and expand NeoAg-specific T-cells in vivo, expecting the eradication of tumor cells.

Figure 2: NeoAg-specific T-cells induced by PDC*line cells have an effector/memory phenotype, are functional and 
specific to the mutated antigen. (A) Dot plots showing the CD45RA and CCR7 staining of total CD8+ T-cells and of CD8+ T 
cells specific to AKAP13, ME-1, gp100, and CAMEL (Donor HD#03). Naive cells are CD45RAposCCR7pos and memory cells are 
CD45RAnegCCR7neg. Results are representative of one experiment. (B) Illustrative dot plots showing the expression of CD107 and IFNγ 
by multimer-positive (upper line) and multimer-negative (bottom line) CD8+ T-cells from HD#02 donor upon antigenic stimulation with 
mutated or wild-type (WT) AKAP13 peptide. Results are representative of two experiments.
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the mutated form of the neopeptide as they did not react 
against the wild-type peptide.

Altogether, these data demonstrate that PDC*vac 
represents an interesting tool for assessing the 
immunogenicity of neo-epitopes in vitro, as well as a 
powerful vaccine platform for NeoAg-based cancer 
vaccines. Indeed, PDC*line is a highly potent professional 
antigen-presenting cell that migrates in lymph nodes and 
tissues (unpublished data) to directly stimulate peptide-
specific CD8+ T-cells. The allogeneic context may bring 
supplementary activation signal for the immune system. 
As PDC*line cells are loaded with short peptides, there 
is no need of antigen transcription, translation, and 
processing since the peptides are directly loaded on and 
presented by surface HLA molecules. Finally, the direct 
presentation of peptides by the dendritic cells themselves 
avoids any unwanted tolerance induction.

CONCLUSIONS

NeoAgs appear attractive candidates to induce 
specific anti-tumor responses in cancer patients, on top of 
classical tumor-associated antigens and in association with 
ICIs. A potent dendritic cell product such as PDC*neo 
represents a valuable platform to develop NeoAg-based 
cancer vaccines (Figure 3). We strongly believe that this 
new delivery technology based on potent PDC*line cells 
can induce a robust anti-NeoAg CD8+ T-cell immune 
response for the benefit of patients and could reshape the 
landscape of NeoAg-based cancer vaccines.
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